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Abstract—Tactile localization is a useful method to localize
end-effectors of manipulators that do not have accurate posi-
tion encoders or use soft materials which cannot be modeled
accurately. However, making sense of noisy tactile feedback for
localization is a challenging yet compelling problem. In this work,
we present learnable Bayes filter models that can localize robotic
grippers using tactile feedback. We propose a novel observation
model that conditions the tactile feedback on visual maps of the
environment along with a motion model to recursively estimate
the gripper’s location. Qur models are trained in simulation
with self-supervision. We evaluate our method on a tabletop
localization task in which the gripper interacts with objects.
We report results in simulation generalizing over different sizes,
shapes, and positions of the objects.

I. INTRODUCTION

Tactile perception gives robots the ability to make sense
of the physical world by leveraging contact interactions. It
is particularly important for manipulation tasks where vision
cannot provide useful information about the state of the world.
In literature, tactile perception is shown to be crucial for tasks
such as grasping, in-hand manipulation, object recognition,
and non-prehensile manipulation. In this work, we show that
tactile feedback can also be used for the localization of robotic
grippers. Although there have been studies that show the use
of tactile feedback for object localization, the problem of the
gripper localization using tactile feedback is limited.

In the last few years, there has been growing attention on
embedding algorithmic priors of planning, control, and state
estimation into neural networks. One line of research in this
direction is learning sequential Bayes filter models which are
shown to outperform arbitrary neural network architectures
for state estimation problems in partially observable environ-
ments. Jonschkowski and Brock [4] and Karkus et al. [6]
proposed differentiable histogram filters and showed that it
can outperform LSTM-based networks in environmentss with
discretized state spaces. Several improvement have been made
improve learnable Bayes filters such as using Particle filter S]]
or Kalman filters [3]] to handle continuous environments.

In the manipulation literature, tactile localization is often
defined as inferring object locations using tactile feedback [1}
8|] but we tackle the problem of inferring gripper pose in the
world coordinates. The closest work to ours is [7] in which the
authors aim to localize a tactile sensor in visual maps using
Bayes filtering. A visual-tactile sensor is used to generate SIFT
features of the current observation. These local features are
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then matched with the SIFT features of the visual map to
calculate the likelihood probabilities. The major limitation of
this work is that for every new map, the pre-processing step of
calculating the visual map’s features needs to be reperformed.

II. APPROACH

The main objective of this work is to localize a robotic
gripper with respect to an image using tactile feedback. We
formulate our problem as discrete Bayes filtering as introduced
by Thrun [[L1] which is widely used for state estimation with
uncertain models. Bayes filtering maintains a belief over state
space and recursively update the belief using observation
model and motion model:
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where 7 is the normalization factor, p(o;|s;) is the observa-
tion model, and p(s¢|s¢—1,a:—1) is the motion model. These
models are parameterized by neural networks and learned from
data using gradient descent.

To this end, we have two goals: (1) Learn an observation
model that is conditioned on an image, e.g. an image of the
tabletop. This observation model would describe the expected
tactile feedback as a function of gripper position for a new
scene, as conveyed by the image of the tabletop surface, (2)
Learn a motion model that transitions belief at each state to the
next timestep. We use images of the environment as the map
where each pixel is a discrete representation of the gripper’s
location. The state space is defined as the pixel coordinates
of the gripper s; = (p,py) € Z7*W where H is the height
and W is the width of the image, I. For tactile observations,
we use the the last 16 joint positions of gripper fingers
received until the current state. The belief space is encoded



as a H x W matrix where the matrix elements represent the
probability values of the belief. Our problem can be formulated
as estimating the bel(s;) of the state given the image of the
environment I and the observation o;. Let f3/(-) be a function
that takes the current belief as input and outputs the predicted
belief at next timestep, i.e. fas(bel(s;_1)) = bel(s;) and fo(-)
be a function that takes the current observation and image
of the environment as input and outputs the likelihood of
observing o; in the image I, i.e. fo(o, I) = p(ot|st, I). We
can then write the observation and prediction steps as:

bel(st) = nfo(or, 1) © far(bel(si—1)) (2)
A. Bayes Filter Networks

For observation model fo (o, I), we use a modified U-Net
architecture developed by Ronneberger et al. [9]. The network
consists of 3 modules: (I) Image Encoder is a stack of 6 2D
convolution layers which takes the depth image and produce
latent feature maps, (II) Observation Encoder is composed of 3
1D convolution layers and it takes the observation and generate
latent features maps, (III) The Likelihood Decoder takes both
set of feature maps and feed into 6 2D convolutional layers by
concatenating the feature maps. The 2D convolutional layers
are followed by batch normalization and ReLu activation
except for the last layer of the decoder. The 1D convolutions
layers are followed by ReLu activation. For the Image En-
coder, max pooling layers are used for down sampling and
for the Likelihood Decoder, we use transposed convolutional
layers for up sampling. The last layer of the decoder has 16
channels representing 16 discrete probability values for each
pixel. Each pixel gives the probability value of the gripper
being in that pixel given the observation and the depth image.
To get pixel-wise probability values, we apply depth-wise
softmax and train the network using categorical cross entropy
loss. Since the likelihood map refers to a probability mass
function, the elements of the map need to be positive and sum
to one. To realize this, we normalize the output of the network
over pixels.

The motion model takes the previous belief as the input
and makes predictions for the next timestep. Since the finger
only moves with linear velocity, our motion model is not
conditioned on actions. We define our motion model fy,(-)
as a 2D convolution operation where the kernel weights
wyr € R3*3 represent the transition probability function,
thereby, the elements of the kernel need to be positive and
sum to one. This is enforced with softmax normalization over
the weights.

B. Data Collection

We generate a dataset of state transitions and collect en-
vironment images, observations and ground truth likelihood
maps by rolling out simulations. A simulation environment
is developed using the MuJoCo physics engine developed by
Todorov et al. [12] to collect the dataset. The environment
consists of a free-floating gripper [10]], a table and objects on
the table (see Figure [T). A top-down facing depth camera is
positioned over the table. The gripper moves from one edge

of the table with a linear motion up to the opposing edge of
the table. As explained in Section [[I] the state space is the
coordinates of the gripper in the camera frame. In order to
find the pixel coordinates of the gripper, we first transform the
pose of the gripper base to the camera frame and then project
it into pixel coordinates: p = M, M.+ Py, where M;,; and
M., are intrinsic and extrinsic camera matrices, respectively,
and p = (pa,py) is the vector of pixel coordinates of the
gripper. The joint angles of the gripper are used as the tactile
observations. The gripper used in this work has hydrostatic
linear actuators which allows us to set the finger joint stiffness
to a low value. This way, the gripper can interact with objects
without moving them. To generate the dataset, we first sample
an environment configuration by sampling object positions and
and sizes. Then, the gripper traverse over the each pixel rover
and collect the observation for each state. To train the network,
we generate ground truth likelihood maps by calculating the
distance of the observations to each other. These distances are
then normalized between O and 1 to get the probability values.
Finally, we discretize probability values into 16 categories to
use cross-entropy loss.

III. EXPERIMENTS

Both of the networks are trained with data collected using
the simulation environment by self-supervision. The trained
model are combined for recursive state estimation. To evaluate
the localization success, we perform the filtering on unseen
episodes. We show results on two sets of objects: (I) Primitive
objects including squares, spheres, capsules, and cylinders, (II)
YCB objects [2]. Note that the networks are only trained on
the primitive object set to show that it can generalize over new
objects. Our performance metric is the Manhattan distance
between the true state and predicted state at the end of a
trajectory. For the experiments, we generate a randomized
scene and run 64 episodes and take the mean error. For
primitive objects, we achieve a mean error of 1.15 and for
YCB objects we achieve a mean error of 5.07.

IV. CONCLUSIONS

In this work, we have addressed the problem of tactile
localization where the goal is to localize a robotic gripper
using tactile feedback. We formulate the localization problem
as a recursive Bayes filtering problem and learn the filter
models from data. A self-supervised and simulation-based
data collection procedure is introduced to collect contact
interactions between the environment and the gripper. We
showed that in addition to successful localization with unseen
object configurations and sizes, our approach can also localize
with novel objects. The main drawback of our method is
the assumption that the gripper does not move objects. To
mitigate this problem, we would like to extend the localization
formulation to track the objects as well. Our future work
also includes combining the proposed localization method
with policy learning to perform manipulation tasks by jointly
learning the localization and planning.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

Maria Bauza, Oleguer Canal, and Alberto Rodriguez.
Tactile mapping and localization from high-resolution
tactile imprints. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3811-3817.
IEEE, 2019.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha
Srinivasa, Pieter Abbeel, and Aaron M Dollar. Bench-
marking in manipulation research: The ycb object and
model set and benchmarking protocols. arXiv preprint
arXiv:1502.03143, 2015.

Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and
Pieter Abbeel. Backprop kf: Learning discriminative
deterministic state estimators. In Advances in Neural
Information Processing Systems, pages 4376-4384, 2016.
Rico Jonschkowski and Oliver Brock. End-to-end learn-
able histogram filters. In Workshop on Deep Learning
for Action and Interaction at NIPS, December 2016.
Rico Jonschkowski, Divyam Rastogi, and Oliver Brock.
Differentiable particle filters: End-to-end learning with
algorithmic priors. In Proceedings of Robotics: Science
and Systems, Pittsburgh, Pennsylvania, June 2018. doi:
10.15607/RSS.2018.XIV.001.

Peter Karkus, David Hsu, and Wee Sun Lee. Qmdp-net:
Deep learning for planning under partial observability.
In Advances in Neural Information Processing Systems,
pages 4694-4704, 2017.

Shan Luo, Wenxuan Mou, Kaspar Althoefer, and Hong-
bin Liu. Localizing the object contact through matching
tactile features with visual map. In 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 3903-3908. IEEE, 2015.

Robert Platt, Frank Permenter, and Joseph Pfeiffer. Using
bayesian filtering to localize flexible materials during
manipulation. IEEE Transactions on Robotics, 27(3):
586-598, 2011.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234-241. Springer, 2015.

Eric Schwarm, Kevin M Gravesmill, and John P Whit-
ney. A floating-piston hydrostatic linear actuator and
remote-direct-drive 2-dof gripper. In 2019 International
Conference on Robotics and Automation (ICRA), pages
7562-7568. 1EEE, 2019.

Sebastian Thrun. Probabilistic robotics. Communications
of the ACM, 45(3):52-57, 2002.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026-5033. IEEE, 2012.



	INTRODUCTION
	APPROACH
	Bayes Filter Networks
	Data Collection

	Experiments
	CONCLUSIONS

