Robot Controlling Robots - A New Perspective to Bilateral Teleoperation in Mobile Robots

Nazish Tahir

Abstract-Adaptation to increasing levels of autonomy - from manual teleoperation to complete automation is of particular interest to Field Robotics and Human-Robot Interaction community. Towards that line of research, we introduce and investigate a novel bilaterally teleoperation control strategy for a robot to the robot system. A bilateral teleoperation scheme is typically applied to human control of robots. In this abstract, we look at a different perspective of using a bilateral teleoperation system between robots, where one robot (Labor) is teleoperated by an autonomous robot (Master). To realize such a strategy, our proposed robot-system is divided into a master-labor networked scheme where the master robot is located at a remote site operable by a human user or an autonomous agent and a labor robot; the follower robot is located on operation site. The labor robot is capable of reflecting the odometry commands of the master robot meanwhile also navigating its environment by obstacle detection and avoidance mechanism. An autonomous algorithm such as a typical SLAM-based path planner is controlling the master robot, which is provided with a suitable force feedback informative of the labor response by its interaction with the environment. We perform preliminary experiments to verify the system feasibility and analyze the motion transparency in different scenarios. The results show promise to investigate this research further and develop this work towards human multi-robot teleoperation.

I. INTRODUCTION

The field of Robotics has a long history with key role played by bilateral teleoperation of manipulators in the early 1950s. The research in bilateral control has progressed ever since, along with significant developments in industrial robots and recently in space and surgical applications [1], [2]. Teleoperation allows human control of a robot system remotely in a safe way avoiding challenging or harmful environments that could be far away or out-of-reach for humans [3]. Specifically, we consider the teleoperation of mobile robots, which can be useful in various applications such as exploration of underwater, underground, space or radioactive sites, urban search, and rescue mission, and cooperative transportation [4]–[7].

The complete autonomy of robots is still far from being realized due to which remote teleoperation of the robots can be applied interchangeably with the autonomous capabilities of mobile robots to completely navigate a sophisticated environment. Typical teleoperation requires a human-machine interface using which a human can apply his/her cognitive and intellectual skills to perform a remote robot task [8]– [10]. However, we provide a different perspective, where we argue that the teleoperator can as well be another robot with autonomous/AI capabilities.

Here, we envision a bilateral robot-robot teleoperation system presented in Fig. 1, where the *Master* robot is an

Ramviyas Parasuraman

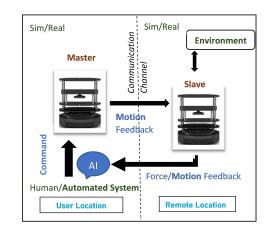


Fig. 1. An overview of the robot-robot bilateral teleoperation system.

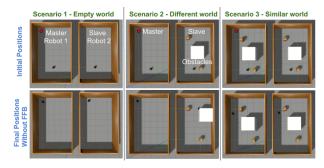


Fig. 2. Experiment setup of various scenarios simulated in ROS Gazebo. The red dot indicates the goal location set in the master side, which is running AMCL and *move_base* planner. The Labor reacts to master's motion. The environment reaction Force Feedback (FFB) at Labor may be fed to the master.

autonomous system that sends task commands over to the $Labor^1$ robot through the wireless communication channel. The task command is carried out by the Labor, which is also expected to navigate and perceive the environment through its sensors. Bilateral teleoperation usually involves tight coupling between the Master and the Labor using force feedback, which continuously provides a bidirectional flow of information regarding the movement traversed by the robots.

In this paper, we investigate force feedback teleoperation between two robots, one with advanced computation skills at the *Master* side and another with basic navigation skills at the *Labor* side. Through this study, we aim to contribute to reacting to the contacts with the remote environment through intelligent control. The reactions of one robot are sent to the other robot through the bilateral force feedback loop to get corrective actions and supportive navigation commands. A video demo of the work is available: https://youtu.be/XZYHd583iJ8.

The authors are with the Heterogeneous Robotics Lab, Department of Computer Science, University of Georgia, Athens, GA 30605. nazish.tahir,ramviyas@uga.edu

¹We refer to the system as Master-Labor, instead of the conventional Master-Slave term used in the literature.

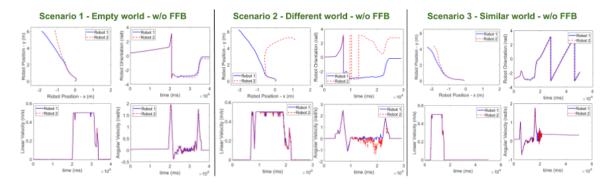


Fig. 3. Trajectories and velocity tracking of the bilateral teleoperation system without force feedback. Robot 1 is the Master and Robot 2 is the Labor.

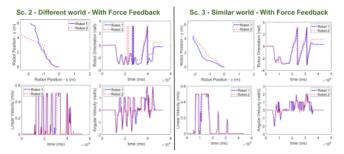


Fig. 4. Trajectories and velocity tracking with force feedback.

II. PROPOSED ROBOT-ROBOT TELEOPERATION

In our system, the *Master* robot and *Labor* robots are coupled through *four control* bilateral teleoperation architecture [11], which provides both force and velocities between both the sides. This architecture is well known to provide transparency and stability with manageable time delays. Arguably, the communication channel plays an important role, which needs to provide fast round trip data. However, there are several recent works that address this challenge - both from a networking perspective [12], [13] and from the control architecture perspective [14], [15] to manage the time delays in the feedback loop caused by the communication channel. There can be several situations where our system is applicable.

- Cloud Robotics [16] The *Master* robot here is a simulated robot in the cloud server, which can be used to offload most of the computation abilities such as high dimensional mapping and path planning. In contrast, the *Labor* robot could only react to the contacts (or close proximity for safety issues) to the environment.
- Human-Robot Interaction The *Master* robot could be controlled by human to either perform the remote task at the *Labor* or to test the performance of new navigation strategies or algorithms acting at the *Labor* site.
- Autonomy Algorithms The proposed system can be used to verify and validate supervised teleoperation or completely autonomous algorithms by testing them in different scenarios and observing dynamic changes or adaptability to the control modes.

Both Master and Labor sides could have a simulated or a real robot depending on the nature of the interaction.

III. PRELIMINARY EXPERIMENTS AND DISCUSSION

We consider a scenario where bilateral teleoperation is applied at a remote robot to ensure position tracking of the endeffector while carrying out sub-task control such as obstacle avoidance [17]. We implement this in ROS Gazebo, where we simulate two Turlebot 2e robots in two identically similar experiment rooms of size 5m x 5m. The robots are simulated in two machines connected through a Wi-Fi network with an average of 8ms delay. We achieve overriding of velocity commands through a cmd_vel_mux multiplexer. The master robot can run advanced navigation planner, while the salve can only detect nearby obstacles within 0.5m to 1m range and reacts to it by stopping and making a turn before it hits the obstacle. This reaction force is fed back to the Master.

Fig. 2 provides an overview of different scenarios (with or without obstacles in the environment) experimented in our initial study. We are interested in how well the Labor robot reacts to changes in the Master and how well the force feedback from the Labor been utilized by the master robot. We first test the system without force feedback, meaning that the Labor reacts to master, but the Master does not react to the Labor. In the second test, we activate the force feedback and observe the tracking performance at the Labor and reactivity at the Master. The results of this test are reported in Fig. 3, and the results of the second test is presented in Fig. 4.

From the graphs, we can see that without force feedback, the system was able to track only the linear velocities, but any error in the angular velocities (hence the orientation) is accumulated, and therefore, the system diverged from achieving same trajectory outcomes or tracking performance. However, when the force feedback was activated, the system was able to make better tracking performance at the Labor as expected.

Summary: We proposed a new perspective of applying bilateral teleoperation between robots without human in the loop, which will open new possibilities in cloud robotics and human-multi-robot interaction. We believe the outcome of this approach will help design a control interface for mobile robots such that they can adapt between different control modes from manual teleoperation to full autonomy at the Labor side, depending on the performance and computational limitations. This is an ongoing research, and we plan to further investigate transparency and stability with variations in network delay, bilateral architecture, environment scaling, etc.

REFERENCES

- J. Guo, C. Liu, and P. Poignet, "A Scaled Bilateral Teleoperation System for Robotic-Assisted Surgery with Time Delay," *Journal of Intelligent and Robotic Systems: Theory and Applications*, vol. 95, no. 1, pp. 165– 192, 2019.
- [2] B. Davies, "Robotic surgery A personal view of the past, present and future," *International Journal of Advanced Robotic Systems*, vol. 12, no. April 1991, pp. 1–6, 2015.
- [3] H. G. Stassen and G. J. Smets, "Telemanipulation and telepresence," *Control Engineering Practice*, vol. 5, no. 3, pp. 363–374, 1997.
- [4] T. B. Sheridan, "Teleoperation, telerobotics and telepresence: A progress report," *Control Engineering Practice*, vol. 3, no. 2, pp. 205–214, 1995.
- [5] J. Peterson, W. Li, B. Cesar-Tondreau, J. Bird, K. Kochersberger, W. Czaja, and M. McLean, "Experiments in unmanned aerial vehicle/unmanned ground vehicle radiation search," *Journal of Field Robotics*, vol. 36, no. 4, pp. 818–845, 2019.
- [6] I. Kruijff-Korbayová, F. Colas, M. Gianni, F. Pirri, J. de Greeff, K. Hindriks, M. Neerincx, P. Ögren, T. Svoboda, and R. Worst, "Tradr project: Long-term human-robot teaming for robot assisted disaster response," *KI-Künstliche Intelligenz*, vol. 29, no. 2, pp. 193–201, 2015.
- [7] A. Owen-Hill, R. Parasuraman, and M. Ferre, "Haptic teleoperation of mobile robots for augmentation of operator perception in environments with low-wireless signal," in 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2013, pp. 1–7.
- [8] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano *et al.*, "The current state and future outlook of rescue robotics," *Journal of Field Robotics*, 2019.
- [9] H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. Vice, "Analysis of human-robot interaction at the darpa robotics challenge trials," *Journal of Field Robotics*, vol. 32, no. 3, pp. 420–444, 2015.
- [10] R. Parasuraman, S. Caccamo, F. Båberg, P. Ögren, and M. Neerincx, "A new ugv teleoperation interface for improved awareness of network connectivity and physical surroundings," *Journal of Human-Robot Interaction*, vol. 6, no. 3, pp. 48–70, 2017.
- [11] D. A. Lawrence, "Stability and transparency in bilateral teleoperation," *IEEE transactions on robotics and automation*, vol. 9, no. 5, pp. 624– 637, 1993.
- [12] Y. Li, K. Liu, W. He, Y. Yin, R. Johansson, and K. Zhang, "Bilateral Teleoperation of Multiple Robots Under Scheduling Communication," *IEEE Transactions on Control Systems Technology*, pp. 1–15, 2019.
- [13] E. Slawiñski, V. Moya, D. Santiago, and V. Mut, "Force and Position-Velocity Coordination for Delayed Bilateral Teleoperation of a Mobile Robot," *Robotica*, vol. 37, no. 10, pp. 1768–1784, 2019.
- [14] A. Franchi, C. Secchi, H. I. Son, H. H. Bülthoff, and P. R. Giordano, "Bilateral teleoperation of groups of mobile robots with time-varying topology," *IEEE Transactions on Robotics*, vol. 28, no. 5, pp. 1019– 1033, 2012.
- [15] D. Lee, A. Franchi, P. R. Giordano, H. I. Son, and H. H. Bülthoff, "Haptic teleoperation of multiple unmanned aerial vehicles over the internet," *Proceedings - IEEE International Conference on Robotics and Automation*, pp. 1341–1347, 2011.
- [16] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, "A survey of research on cloud robotics and automation," *IEEE Transactions on automation science and engineering*, vol. 12, no. 2, pp. 398–409, 2015.
- [17] A. Zakerimanesh, F. Hashemzadeh, A. Torabi, and M. Tavakoli, "Controlled Synchronization of Nonlinear Teleoperation in Task-space with Time-varying Delays," *International Journal of Control, Automation and Systems*, vol. 17, no. 8, pp. 1875–1883, 2019.