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Abstract— We are interested in manipulation tasks that
embrace contacts as a necessary means to perform information
gathering. We formulate the problem as a partially observable
decision process (POMDP) and solve it using imitation learning.
We assume access to a simulator that provides all information
needed for learning the tasks. Leveraging this privileged infor-
mation, we train a POMDP expert that solves the task while
performing informative actions using contacts. We then train an
agent that acts on partial information by cloning this expert’s
behavior. We test our method on a novel robotics domain and
set up an experiment with a real robot.

I. INTRODUCTION

While humans use contacts as important sensory feedback,
modern robots often avoid contacts due to potential structural
damages. However, in many real-life manipulation tasks such
as searching for items in a pocket or a drawer, contacts are
ideal because other sensory modalities such as vision might
be unavailable or insufficient.

To solve these tasks, we assume that during training we
have a physics simulator that can provide access to all
information needed for the tasks. We want to leverage this
access during training to train an intelligent agent that makes
optimal decisions in the real world in which such full state
observability is often infeasible.

To exploit true states in simulations during training, pre-
vious approaches use Asymmetric Actor Critic [1] [2] in
which the actor (agent) acts on observations (images) while
its policy is criticized by a critic having access to true states.
Imitation learning is also used in [3] [4] to behavior-clone an
expert that has access to true states. These papers, however,
assume a one-to-one mapping between each true state and
each observation, which often does not hold in partially
observable decision processes (POMDPs). By contrast, we
instead train a POMDP expert and then train an agent to
imitate this expert. Empirical results in a robotics domain
show that this way, the trained agent can nearly reach the
expert’s performance reliably, while other baselines have
lower and inconsistent performances.

II. BACKGROUND

A POMDP is defined by a tuple (S,.A,Q, 7,0, R) where
S, A, Q) are the state, action, and the observation spaces;
T(s,a,s") = p(s'|s,a) is the state transition function;
O(s',a,0) = p(o|s’, a) is the observation model; and R (s, a)
is the reward function. In POMDPs, the agent only observes
o € §) not the true state s € S at any timestep. Therefore, it
has to rely on the history of actions and observations {o, a}
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to make decisions optimally. However, the history would
grow exponentially over time. Alternatively, the agent keeps
track of a belief state b, which is defined as a probability
distribution over S. Optimal policies are those that maximize
the expected discounted future reward given an initial belief.
It is shown that the belief state is a sufficient statistic of
history and one can construct optimal policies from the
belief.

III. APPROACH
A. Experts

First, we train a POMDP expert in the belief space.
With the assumption of known transition and observation
functions during training, we can update belief states using
the following equation [5].

V(s = O(s',a,0) > s T(s,a,5")b(s) o
p(ola, b)

A belief update is performed after the agent takes an action
a, enters a next state s’, and observes a new observation o.
Using Eq. 1, we learn an expert, which is trained on the belief
space using the actor-critic method [6]. The expert consists of
two parts: the actor selects actions given the current belief
m(alby) and the critic estimates V™ (b;), which is used to
update the policy in a policy gradient fashion.

To compare with learning from this POMDP expert, we
also train an MDP expert, which is an actor-critic agent that
has access to the full state. This expert knows all information
needed, therefore, it does not have to explore. For tasks
that require information gathering actions, we show later
that imitating such an expert, the agent will end up with
a sub-optimal policy since it receives no guidance on how
to explore efficiently.

B. Imitation Learning

We use DAgger [7] to learn from the above experts.
The idea is to imitate experts to choose actions over the
distribution of visited states. The first phase is collecting data
when the agent interacts with the environment for a number
of episodes (roll-outs). Next, the agent asks an expert for a
correct action in each encountered state. Visited states and
corresponding expert actions form a supervised set data to
train the agent’s policy for several epochs. After that, the
updated policy is used to collect data and the whole process
repeats.

In our POMDP setting, where true states are partially
unknown to the agent, it has to act on n-timestep histories
{0i,a;}iZ} . Also, different inputs are used to query dif-
ferent experts for actions: the current belief state b; for the
POMDP expert and the true state s; for the MDP expert.
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Fig. 1: The Finger domain with state s = (0, ., z;, 2, ),
observation o = (6,xz.). The agent controls the moving
direction of the cart (left/right) and the stiffness (0/1) of the
finger. The agent has to push the right bump (green) to the
right without moving the left bump (red).
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1V. EXPERIMENTS AND RESULTS
A. The Finger Domain

We designed the Finger domain which consists of a single
finger on a movable cart (yellow), the left bump (red),
and the right bump (green) (Fig. 1). A state s includes the
finger’s angle 6, the positions of the cart x., the left bump x;,
and the right bump z, with ., z;, z, € {0,...,40} and 6 €
{—1 (pointing left), 0 (pointing down), 1 (pointing right)}.
At any given time, s is partially observable to the agent. It
however can fully observe o = (6, z.). We also have a real
robot setup for this domain (Fig. 3).

The agent controls the moving direction of the cart
(left/right) and the stiffness (0/1) of the finger’s joint. At
t = 0, the cart and the bumps are randomly positioned such
that z. € {0,...,40}, z,z, € {2,...,38}, 2 <z, — 1y <
20, and 6 = 0. When the cart moves, the finger can make a
contact with a bump. In that case, if the finger is compliant,
the cart can pass the bump without it. By contrast, when
the finger is stiff, the cart can cause a displacement to the
collided bump. The collision can also cause a change to 6.

The agent’s goal is to move the right bump (green) to the
right without moving the left one (red). It is rewarded 1 if it
succeeds and O otherwise. The episode is terminated when-
ever either bump is moved. To perform the task optimally,
the agent has to use contacts to “feel” and localize the right
bump to be able to push it.

B. Experts

o« POMDP expert: We train an asynchronous advantage
actor critic (A3C) [8] agent in the belief space over
unknown bumps’ positions (x;,z,) and known obser-
vations o = (6, x.).

e MDP expert: We train an A3C agent on full state s =
(0, xc, 1, 2y ).

After being trained, these two experts can solve the task
nearly 100% of the time.

C. Baselines

We compared the performance with 2 baselines:

o Deep Recurrent Q-Network agent [9]: It is not easy
to use true states in this case so we let the agent use
{0i,a;}iZ}_, to make decisions.

o Asym A2C agents [1]: The actor takes in {o;, a; E;Ln
histories, while the critic can use true states or beliefs.
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Fig. 2: The learning curve of our agent with 16 timestep
histories as input compared with baselines.

Fig. 3: The Finger domain set-up with a UR5e arm.

D. Results

We parameterize all agents as LSTM-based neural net-
works. Our trained DAgger agent, when cloning the POMDP
expert, can reach about 95% of the expert’s performance
(Fig. 2). Asym A2C agent uses beliefs have comparable but
more varied performance and it is more sample-inefficient.
Asym A2C agent uses true states have slightly worse per-
formance possibly because it cannot capture and exploit
the past as good as beliefs do. DRQN, that relies only on
observation-action histories perform worse, can reach 82% of
the maximum performance. The worst performance belongs
to our DAgger agent when imitating the MDP expert. The
agent does not learn how to explore efficiently and the
learning plateaus at sub-optimal performance after a while.

V. CONCLUSION AND FUTURE WORK

In this paper, we use the access to full states during
training and imitation learning to train an intelligent agent
that uses contacts to explore to solve a manipulation task.
Preliminary results have shown the potential of our approach.
Our agent yields higher and more consistent learning perfor-
mance than that of existing methods. Moreover, our approach
can easily extended to other POMDP domains. For future
work, we want to explore different types of imitation learning
methods. Specifically, we want to experiment with learning
from expert demonstrations [10] or imperfect ones [11]. It is
also interesting to work with more complex domains where
we have to learn the dynamics of the environment instead of
knowing them beforehand.
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APPENDIX

The change of the belief space (over the bumps’ position)
in a trajectory, which is generated by the POMDP expert, is

visualized in Fig. 4.
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(a) T=0: The cart with a
compliant finger () starts
on the right side of the
right bump (X). No bump
is at this location there-
fore cells that are at the
same horizontal and verti-
cal level are dark.
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(¢) T=10: The agent fin-
ishes exploring the right
side without making con-
tact with any bump. It
reaches the right limit and
has to head back to find the
bumps.
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(b) T=1: The agent goes
right diagonally with a
compliant finger () to ex-
plore. No bump is de-
tected, belief updates filter
out impossible cells.
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(d) T=29: Many cells are
dark due to a bump con-
tact. The collided bump is
the right one because no
bump was found on the
right side. The agent then
pushes this bump.

Fig. 4: The belief space in a trajectory generated by a
POMDP expert. It is represented by a 41x41 grid (X - the
right bump’s position, Y - the left bump’s position). The color
of each cell represents the value of the belief b(z;, z, ). Many
cells are dark (b = 0) initially because z;,x, € {2,...,38}
and 2 < z, — x; < 20. Two bumps (left bump - X, right

bump -

) and the cart (»: with a stiff finger or

: with a

compliant finger) move on the diagonal of the square.



